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THE COMPRESSION OF AN UNBOUNDED BODY WITH SEMI-INFINITE 

V.K. VOSTHOV 

CYLINDRICAL CAVITIES* 

The deformation of an unbounded elastic body with two semi-infinite 
cylindrical cavities (Fig.1) under uniform compression by a load p, at 
infinity, perpendicular to the axis of symmetry is considered. Aninfinite 
cylinder rga and an infinite body with a hole of radius bare separated 
by surfaces r= (1 and r= b from the body mentioned. For frl<c the 
interval between them is filled with thin rings. For a= 0 a bottomless 
pit is obtained that is partially filled with discs of radius b; the case 
b--ad b is of special interest, i.e., when the distance between the 
slot edges is several times less than the hole diameter. In this case 
brittle fracture occurs by spalling of the cylindrical part (a projection 
that is called a core) and transformation of the body into a pit. The 
dead-end of the slot is the focus of the stress concentration, sometimes 
resulting in phenomena of the rock-burst type in hard rocks. Conditions 
for their origination are clarified, which is important for estimates of 
the magnitude of mountain pressure. Methods utilized in /l/are extended 
in this paper and the results of this research are refined. 

1. Derivation of the basic equations. Under the action of the pressures p,(z) and 

Pb tz) on the inner and outer sides of an elastic ring , corresponding radial dispalcements 
occur. 

Eu,(a+O,Z)=b~[(~v_+~-r+ pa-bb’pb 
) 3 

Eu,(b--O,z)=b~[aap,-(~~_+~V+)p*] 

v* = 2(1 *v) 

where E is Young’s modulus, and v is Poisson's ratio. On the 
other hand, the pressure p.(z) on the surface of an infinite 
continuous cylinder will cause radial displacements /2/ for 

IZl<C 

Eu, (a - 8,~) = - 2a (1 - va) j L,’ (z - s) pa 6) ds 
-c 

i- 
L,(:)=y G,(h)sinh++ 

s 
0 

Fig.1 Ga (a) = - iv- + aa II- x,*(h)])-‘, x,(a) = I, (a)/~, (a), 

(lo,,(h) is the modified Bessel function of the first kind). 
The condition of continuity for the radial displacements and their derivatives on the 

inner side of the ring and the surface of the continuous cylinder yields an equation connec- 
ting the desired pressures R&b(z) 

QoP: (Z) - Pb' (Z) + e j w, (Z - S) pa (s) ds = 0, 1 Z l G c (1-f) 
--e 

and the relationship 

QaP. (0) - Pb (0) + e j J?,’ 6-J PO (S) ds = 0 
--c 

(1.2) 

Here 
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PO --z ‘i, (y/i2 -1. vc), E = (1 - v”) (1 - k2), k := a/b 

Utilizing the asymptotic formula 

c, (7") h? + (1 -- 2v) ?“-.-z + 0 (h-y, h--L M 

the kernels w, (Z) and L,' (z) can be represented in the form of a sum 

W,(z)=Wa*(Z)-- * sign Z, 
(1.3) 

&%)=&&(v+I$I)_i V,(z) 

w,* (4 = - $g K, (v+ +) - w,o (z) 

1-2v w~“(z)=$f[Ga(h)- *-T]sinh$dh 
" 

where K,,,(Z) is a Macdonald function. 

Considering now the strain of an unbounded elastic body with a hole of radius b whose 
axis coincides with the z axis, as before we obtain the equation 

kap;(z)-qQbp;(Z)-& i W*(Z--s)pb(S)ds=0, IcI<c 
--e 

and the integral relationship 

(1.4) 

hap,, (0) - qbpb (0) - E j Lb)(s) pb (4 ds = P - I)P- 
-c 

(1.5) 

where qb = I/& (v_ + kZv+). Here also 

Gb (h) = h-1 - (1 - 24 x2 + 0 (h-y, I” + m 

while relationships identical to (1.31, on replacing a by b, signz: by --signZ and Y, by v_, 

hold for the functions W, (z) and L,’ (z) . 
In particular, for a = 0 the integrodifferential equation (IDE) 

Pb’tZ)+-v+ i wb(Z--8)pb(S)ds=o, lZl,<C 
-c 

(1.6) 

and the relationship 

P 

Pb to) -t v+ s 2P.Z 
Lb’ (S) Pb 6) dS = i-_v 

--c 

(1.7) 

follows from (1.4) and (1.5) for determining the pressure pb(Z) in the case of a pit. 

In the general case (O<k<l) relationships (1.4) and (1.1) in conjunction with con- 

ditions (1.5) and (1.2) are a system of singular IDE in the pressures pa, b(z) on the boundaries 
of the separated bodies (the solid cylinder and the unbounded body with the cylindrical hole). 
We note that a uniform stress state (&&b(z) = pm) is set up at a sufficient distance from the 
cavity dead-end for c> b and in the limit case when c = 00 the system of equationsobtained 
has the trivial Solution pa, b(Z) = pm. 

Integrating (l.l), (1.4) and (1.6) with respect to the variable z and transferring the 

origin to the point z = -c for c> b, we arrive at the Wiener-Hopf integral equations 

obtained in /l/ 

pb (z) = Q.(z), k2J’, (Z) = Qb (S), S > 0 (1.8) 

m 

pb (z) + v+ 1 Lb’ (2 - 8) Pb (s) ds = v+p&b” (z) 
0 

(1.9) 

Q..b~S)=~..bP,.b~~)--[~~~~,b(S)-~~~,b(~-S)P..b(S)ds] 

pa, b (z) = Pa. b (z) - pmt Lo,, b(Z) = ‘,&.:b (0) - La, b (S), 220 



627 

We note that the method used in /l/ to solve the integral Eqs.(l.E) is not correctsince 
the independent equations obtained for the desired pressures are not convolutions. 

2. Solution of the IDE. An exact solution of (1.8) and (1.9) can be constructed 
that would be expressed in terms of multiple singular integrals of known functions by re- 
duction to a Riemann boundary value problem on an unlimited line. However, such a solution 
will not be effective from the calculational veiwpoint when going from the transform to the 
original and the subsequent determination of the state of stress and strain in the neighbour- 
hood of the slot dead-end. An approximate solution of the IDE (1.1) and (1.4) will be con- 
structed here in conjunction with relationships (1.2) and (1.5), and based on application of 
quadrature formulas by the discrete-vortices method and the simplest finite-difference approxi- 
mations of the derivatives of the desired functions. 

It is seen that the derivatives of the pressures PO, b(Z) have a logarithmic singularity 
on the boundary 2 =-t-c of the contact zone, 
where in these zones including the boundary. 

and the pressures are themselves bounded every- 
This property of the solutions of the equations 

obtained follows from the representations of (1.3), its analogous representations for the 
functions IV, (2) and Lb' (2) and the asymptotic relationships 

& (I) - In 124y41, Kl (I) N l/x, 2-e 0, y = const 

Indeed, by setting Pa,b (3) = &,b (4 + v&b (4 where T,,~(z) -0 as z-c and substituting 
this expansion into (1.4) and (1.1) we will have 

9aPPa' (2) - i’b’ (2) = (nd-‘W, (C) h (C - a) + ‘$1 (2) 

Wa’ (2) - 5’bPb’ (2) = - (nb)-‘epb (C) In (C - 2) + 9s (I), 2 + C, 

where cp,,r (I) are functions that are bounded as Z-C. Taking into account that the determi- 
nant of the system of equations obtained is different from zero, we obtain the assertion 
required. 

We introduce the new functions 

then (1.1) and (1.4) and the relationships (1.2) and (1.5) can be rewritten in the form 

&@z~(~)- @b”(Z) - q,a-=-Da(z) + eA,(z)=O (2.1) 

k’@$ (2) - qb@,” (2) - “,jb-‘@, (2) - &Ab (2) = 0 

A,, b (2) = j [w:, 6 (2 - S) + w:, b (2 + s)l @A. b 6) ds, 

0 

e,=e(i-29 
&,,'(O)- @D,'(O)+ 2d&=' 
J&Q, (0) - qb@; (0) - 2&b = (ka - 1) Pm 

B.,b=j a&. b (s) oh. b (3) ds 

II 

(2.2) 

and moreover 

@,z,. b (0) = 6,. b (0) = o (2.3) 

We divide the segment of integration [O,c] into N + 1 equal parts by points si = ctl, 
where t, = ]h, h = (N + 1)-r, j = 0, 1, . . ., N + 1, and use the notation ~1 = ch (i- l/2), i = 1, 2, . . ., 

N + 1. Using the quadrature formula for rectangles for the singular and regular integrals 

/3/ 

i w (21 f s) w (s) * w (2, + c) Q, (c) - w (2‘) 0 (0) - 
0 

N+l 

as well as the finite-difference approximation 

@,” (zi) =: h-8 La (zt+J - 2@ (z*) + CD (z*_J, i = 2, 3, . . .) N 

cp” (aI) =: ‘lgh-8 IO, (2,) - ~UJ (zr) + 24, (0)l 

'#)" (~N+I) = VW 120 (c) - 3(D (zN+l) + @ (ZN)~ 
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we reduce (2.1) to a system of 2(N + 1) linear algebraic equations in 2(N + 2) unknowns 

@a$ (c), Q)a,* (Zi), i -.1,2, . . ., N -+ 1. These equations, in combination with relationships (2.2), 
also written in discrete form by using the quadrature and discrete formulas 

form a complete system of 2N + 4 equations in the discrete values of the pressures on the 
boundary of the continuous cylinder and the unbounded body with the cylindrical cavity. 

i L’ (%+I) [a (%+l) - Q, (zk)l + L’ (c) I@(c) - @ @N+l)l , 
k=1 

The results of a pressure computation by the method described above are presented in 
Fig.2.a for Y= 0.25, Ir= 0.8, and fJ = 1, where fi= c/a in the case of the cylindrical cavity and 
fi = c/b in the case of the pit.The pressure ,~~(zla) on the boundary of the solid cylinder is 
shown by the dashed line, and the pressure pb(zln) on the boundary of the cylindrical hole by 
the dash-dot line and the pressure pb (z/b) in the case of thepitby the solid line. 

b a 

Fig.1 

For a known concentration of the pressure pa(i) 
the axial stress a, is determined by the integral 

-07 
0 ?5 I 

Fig.2 

on the boundary of the solid cylinder 

(2.4) 

where p,*(p) is the Fourier transform of the pressure p,(z) 

pz tp) = z (c 1/ZT)-1 f p, (1) ~0s P f dt 
0 

A numerical computation using (2.4) shows (Fig.2b) that taking account of the pressure 
concentration around the cavity dead-end raises the maximum tensile stress sz on the boundary 
of the solid cylinder. Thus, for V= O.i5 and values of k equal to 0.6, 0.8, 0.9 (lines l-3 
in Fig.2b, respectively, z= (L--)/C) the maximum value of the stress o,(a.z) varies between 
0.7ip, and 0.76~~. Without taking account of the stress concentration (P. (2) = P,) the maximum 
magnitude of sz is approximately 0,45~,. 

A computation of the normal dimensionless stresses ez (rr CVP, in the cavity dead-end for 
values oftheparameter k equal to 0.6 and 0.9 (curves 1 and 2 in Fig.3) shows the presence of 
tensile stresses within the solid cylinder and compressive stresses near its boundary. The 
difference in the data presented in Figs.Zb and 3 is due to the discontinuous nature of the 
stresses at the singular points r=n,\zl=c of the body boundary and is a result of the model 
used for the deformation of an interlayer between the surfaces P= a and r= b. 

The presence of stress concentration in the cavity dead-end results in an increase in 
the pressure 
cylinder with 
into a pit. 

p, to the formation of annular cracks in the sections \z]= c of the solid 
subsequent spalling of the cylindrical part and transformation of the structure 
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ON TWO MIXED PROBLEMS OF ANTIPLANE STRAIN OF AN ELASTIC WEDGE 
WITH CIRCULAR HOLES* 

V.S. PROTSENKO 

Two problems are examined: 1) a wedge with a circular hole, clamped along 
the lower face, is subjected to the action of shear forces along the 
upper face, and 2) a rigid stamp acts on the upper face instead of shear 
forces. The circular hole is assumed to be load-free. Both problems 
reduce to a set of infinite systems of linear equations with a completely 
continuous operator 1, under the condition that the circle does not 
tauch the sides of the angle. These equations enable the method of 
reduction to be used. Formulas obtained, that relate the basis solutions 
of the Laplace equation in two different polar coordinate systems, are 
utilized in the solution. The method can be extended to the case of a 
wedge with several circular holes. 

The problem of the deformation of a wedge with a circular hole was 
first examined in one special in /l/, however, the infinite system 
obtained there remained uninvestigated. 

1. We present the relationships between the basis solutions of Laplace's equation in a 
plane (Figs.1 and 2; 00, = h, O,O, = R), which enable us to change from one system of polar 
coordinates to another 

p-Q?* = q “r(l-s)~(~)n.!r~-~~_., ( 1 (I% < 4 
“-0 

( 1 Pl -* pm1 * 
’ =2&j s r (8) hap-‘ 

-7i- r sinruP(i+s-n) 
ef"'l*" & 

(1-l) 

(1.2) 

$1 = cp -s-a, 01 = 'p1* a<cp<2n+a 

*'I=-q-n+aa, o,=--cp,, -2x+a<cp<a 

(1.3) 

We will apply (1.2) with o1 and g, to satisfy the boundary condition on the face cp= 

o>a and with 0, and $ on the face cp = O<a. 
Formula (1.1) is obtained as follows. The boundary value problem of finding a harmonic 

function within a circle of radius pl< h with centre at the point 0, (Fig.1) is solved. 
Values of another harmonic function p-a@ are taken as boundary values. Hence we obtain 
the equality of the two harmonic functions 
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